Retrofits for Longevity: Health, Design, and Clean Energy

December 18, 2020 | Tom Bassett-Dilley

In the US most of our buildings are not optimized for indoor air quality, energy efficiency, or today’s living patterns. As our building stock ages, and as appliances and HVAC systems, windows, and finish surfaces reach the end of their service lives, we face an opportunity to radically upgrade: we can refashion our buildings toward a positive vision of the future.

Since the 1970s, researchers and the DOE have studied building science* to determine climate-specific recommendations for levels of airtightness and insulation, ventilation and conditioning systems, and efficient appliances. Following these best practices leads to more durable, comfortable, energy efficient environments with far greater air quality than is typical. These to me are the goals of all building, whether new or retrofit, and they can all be done while upgrading appearance and function. Even without going to extremes, houses in most of the US, including our Chicago climate, can achieve 75-100% energy use reduction while weaning off fossil fuels. All the technology and know-how we need is available right now.

To give a sense of the scale of the issue, consider the Chicago region: since we’re a cold climate, nearly half of residential energy use goes to heating. According to 2010 Chicago data, residences collectively use about 24 trillion kWh annually; if these used a sustainable 3,500kWh per person annually, that would be reduced to about 6 trillion—a factor of 4 reduction, while leaving fossil fuels behind. Most of the energy that goes to an older home, typically a leaky and poorly insulated building, is wasted; but with good retrofits, we can get there. I will demonstrate how in my 1919 house I achieved an 84% energy reduction in five steps, which also meant a 75% reduction in my required furnace (which becomes heat pump) capacity.

So what are the roadblocks? The first, as I see it, is lack of vision: it’s easy to remain entrenched in our old, fossil-fuel age, poorly ventilated mindset, and therefore extend our low level of performance. It takes some analysis and experimentation to get beyond that. In TBDA’s remodel and retrofit work we often chart a path to low- or zero-energy use for clients, with the understanding it doesn’t all have to be done at once; but the near-term steps shouldn’t hinder the long-term goal. You have to see down that path ahead, and knowing how each step is contributing to your big goal keeps the motivation high!

Another problematic-at-scale roadblock is the use of real estate for short-term profit. A flipper or developer doesn’t have incentive to do more than code minimum since they won’t get the financial or health benefits of a higher performing building. A production builder may lock in an inefficient thermal envelope and mechanical system for 25 to 50 years—and we only have 10 to get in front of catastrophic climate change. This will probably require demand, and either financial incentives, stricter regulations, or both.

Next, the question of cost: the knee-jerk reaction is that it costs substantially more to build at a higher level, but studies have countered that. True, a couple exhaust-only bath fans are cheaper than an energy recovery ventilation (ERV) system; lots of insulation costs more than little insulation in the short term. But when you look at life cycle costs and the health effects of the envelope, you may have a different value scale than the flipper or production builder. For new construction, the cost to build to a very high level of performance is, from our research and others we’ve seen, only in the 1-7% increase in initial building costs—easily justifiable by long-term energy savings and increased comfort and air quality. This small a margin is within the range of trade-offs for tile or countertop costs, or slightly reduced (better designed!) square footage. In retrofits the math can be harder, but sometimes forgiving, since you face the need to replace aging infrastructure like mechanical systems or windows. 

Thus far, each retrofit we’ve seen is unique, but themes and prototypes are emerging. In our next posts, we will be showing case studies to discuss the design and goal-setting processes, building science, energy modeling, and cost issues. In particular we will attempt to outline cost challenges where they occur so that policymakers can understand where incentives will be needed to get us on track. This is our decade to make a difference.

* Resources include Deep Energy Retrofit Guidance from the Building America Solutions Center,  NREL’s Standard Work Specification website for home energy upgrades, Building Science Corporation’s trove of research papers, insights, and Joe Lstiburek’s wit, the Green Building Advisor website, PHIUS, Fine Homebuilding, Journal of Light Construction, and other publications.

Tom Bassett-Dilley Architects | Contact